
 

1.1.QSAR identifier (title):

ACD/Percepta QSAR for the octanol-water partition coefficient of the

neutral form (LogP/GALAS)

1.2.Other related models:

ACD/Percepta QSAR for the octanol-water partition coefficient of the

neutral form (LogP/Classic)

1.3.Software coding the model:

ACD/Percepta 2016

Advanced Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, Ontario, Canada

M5C 1B5

http://www.acdlabs.com/products/percepta/

 

2.1.Date of QMRF:

14.06.2010

2.2.QMRF author(s) and contact details:

[1]Andrius Sazonovas ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania
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[3]Remigijus Didziapetris ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania
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2.3.Date of QMRF update(s):

October 2017

2.4.QMRF update(s):

Authors of the update: 

Andrius Sazonovas (see Section 2.2 for contacts) 

Simona Kovarich, S-IN Soluzioni Informatiche. Via G. Ferrari, 14,

I-36100 Vicenza (Italy). email: simona.kovarich@s-in.it 

Updated sections: 1.1-3; 2.2; 2.5-9; 3.1; 3.4-5; 4.1-2; 4.4-6; 5.2-4;

6.2; 6.4; 6.7; 7.2; 7.4; 7.7-8; 8.2-3; 9.1-3

2.5.Model developer(s) and contact details:

ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania. Phone: +370 5 2624032; fax:

+370 5 262 37 28 vilnius@acdlabs.com www.acdlabs.com 

2.6.Date of model development and/or publication:

QMRF identifier (JRC Inventory):To be entered by JRC
QMRF Title:ACD/Percepta QSAR for the octanol-water partition coefficient of the
 neutral form (LogP/GALAS)
Printing Date:13-ott-2017

1.QSAR identifier

2.General information



2007.10.25

2.7.Reference(s) to main scientific papers and/or software package:

[1]Japertas, P., Sazonovas, A., Didziapetris, R., and Petrauskas, A., Similarity based assessment of

model applicability domain and quantitative evaluation of the reliability of the prediction. Abstr.

Paper. Am. Chem. Soc., 2008, 235, Meeting abstract 271-COMP

http://oasys2.confex.com/acs/235nm/techprogram/P1160866.HTM

[2]Japertas, P., Sazonovas, A., Didziapetris, R., and Petrauskas, A., Similarity based correction for

the predictions of compounds physicochemical properties. Abstr. Paper. Am. Chem. Soc., 2008,

235, Meeting abstract 247-MEDI (Attached as SI)

http://oasys2.confex.com/acs/235nm/techprogram/P1160811.HTM

[3]Clarke, E. D., Delaney, J. S., Japertas, P., and Jurgutis, P., Agrochemicals and log P octanol:

Evaluation of structure based predictions, Abstr. Paper. Am. Chem. Soc., 2007, 234, Meeting

abstract 64-AGRO (Attached as SI)

http://oasys2.confex.com/acs/234nm/techprogram/P1119638.HTM

[4]Japertas, P., Didziapetris, R., and Petrauskas, A., Fragmental methods in the design of new

compounds. Applications of Advanced Algorithm Builder, Quant. Struct.-Act. Relat., 2002, 21, 23-37

http://www3.interscience.wiley.com/journal/93521415/abstract

[5]Mannhold, R. and Petrauskas, A., Substructure versus whole-molecule approaches for calculating

Log P, QSAR Combi. Sci., 2003, 22, 466-475

http://www3.interscience.wiley.com/journal/104539390/abstract 

2.8.Availability of information about the model:

Model is proprietary, training and test set are not available. However

the compounds used to derive the model and their experimental data are

available within the corresponding software products.

2.9.Availability of another QMRF for exactly the same model:

No

 

3.1.Species:

Not applicable - Physicochemical property

3.2.Endpoint:

QMRF 1. Physical Chemical Properties QMRF 1. 6. Octanol-water partition coefficient (Kow) 

3.3.Comment on endpoint:

The logarithm of a ratio of concentrations of un-ionized compound

between its solutions in n-octanol and water: log Kow= log ([solute in

octanol]/[un-ionized solute in water])

3.4.Endpoint units:

Dimentionless since this is a ratio of concentrations

3.5.Dependent variable:

log Kow - this is the Log to the base ten of the octanol-water

coefficient

3.6.Experimental protocol:

Experimental protocol: 

The dataset used to develop the reported model has been compiled from a

great number of different sources covering a wide variety of

experimental protocols used to determine log Kow values reported within

3.Defining the endpoint - OECD Principle 1



them. This includes the classical potentiometric log Kow determination

methods involving phase titrations, as well as more contemporary and

most modern chromatographic methods like HPLC on standard and modified

(immobilized artificial membrane (IAM) and liposome chromatography)

resins or capillary electrophoresis and centrifugal partition

chromatography. Since log Kow takes into account only partition of

neutral species, when the method involves only single data point

measurement (i.e. the log Kow is not determined by extrapolation from a

pH dependence curve), the water phase is usually buffered to a pH in

which the predominant state of the analyzed compound is neutral. For a

comprehensive overview of the experimental log Kow measurement

techniques please see [1].

3.7.Endpoint data quality and variability:

log Kow is a relatively easily measured property. As a result the

experimental data quality, which is usually inversely proportional to

the complexity of the experiment, is reasonably good. Independent

external studies show that the error between the log Kow measurements

performed by different laboratories using the same protocol

(reproducibility) can be expected to be within 0.5 logarithmic units

[2]. Experimental data from various sources have been used. The

characteristics of the entire dataset compiled for the task of this

model development is: 

 

No. of compounds = 16277 

Min. Value = -5.08 

Max. Value = 11.29 

Std. Dev. = 1.92 

Skewness = 0.22

 

4.1.Type of model:

Hybrid QSAR, combining a linear baseline model utilizing PLS method and

the local similarity based corrections

4.2.Explicit algorithm:

GALAS (Global, Adjusted Locally According to Similarity) algorithm

Global linear baseline QSAR + local similarity based corrections

The global QSAR was developed using PLS in combination with

bootstrapping technique. This method implies random compound sampling

from the initial training set, i.e. generation of new “training

sub-sets”. Each of the sampled sub-sets is of the same size as the

initial training set, however, random manner of their population results

in some compounds being selected more than once, others being omitted.

This procedure is performed 100 times and an independent PLS model is

derived for every sub-set. 

 

Each of those PLS models is based on 2D fragmental descriptors: 

4.Defining the algorithm - OECD Principle 2



log Kow = SUM[i=1..n](ai*fi)

     + c 

wherefiis the number

of occurences of the i-th fragment in a molecule,ai- its statistical coefficient, andc- intercept. 

As a result, each global QSAR model actually represents an ensemble of

100 PLS models, providing each compound with a vector of 100 log Kow

predictions, each based on a slightly different sub-set of the initial

training set. It is defined that two compounds with similar trends in

the variation patterns of the 100 value vectors predicted by a global

QSAR model are considered similar in terms of the analyzed property,

i.e. the differences in the compound sets used to parameterize each of

100 PLS models, constituting a baseline model, affect estimations for

the two compounds in a similar way. The correlation coefficient of the

two vectors is called an Individual Similarity Index between two

compouds (SIi). An

analogous definition of the “property-specific” or dynamic similarity

was first used by Tetko and his co-workers [3-7] and this method has

been recently used in the analysis of the acute toxicity data [8]. 

With the available robust similarity measure, it becomes possible to

analyse the performance of the baseline QSAR model in the local chemical

environment of a query molecule represented by the most similar

compounds in the training set. In case any systematic errors are

encountered for sufficiently similar compounds, a local correction (delta)

is calculated. 

Later on it is possible to train the model quickly and efficiently using

new experimental data by just adding it to this second similarity

correction calculation procedure, without the time costly baseline model

re-training.

4.3.Descriptors in the model:

Fragmental descriptors dimentionless (occurence count) Fixed set of fragmental descriptors, based

on the expanded list of Platt's type fragments (see [9]). A fixed and relatively small set of fragments

was used due to the specifics of the employed modeling methodology. In order for the correlation

between two compound vectors of log Ko/w predictions coming from a baseline QSAR model to be

representative of compound similarity in terms of the analyzed property, these vectors have to be

parameterized using exactly the same set of fragmental descriptors. This prevents the use of any

sort of automated fragmentation routines (atom based, isolating carbon based, chain based, etc.)

that result in a dynamic set of fragments depending on the training set structures. They leave the

possibility that for any query structure from outside the training set the same rules will yield certain

new fragments not encountered in the training set molecules which is not compatible with the main

condition just mentioned. On the other hand, it is equally important for the model to be able to

identify any new structural features of a query molecule that were not present in the training set

compounds. I.e., the fixed fragment set cannot be constructed based on the analysis of the training

set either, or in general any molecule set whatsoever. Because in that case any new structural

features not present in that database would be eventually ignored. As a result, the fragmental

descriptor set is based on the general knowledge and considerations regarding all possible chemical

structures rather than a finite dataset and include all the fragments, even those that are not detected



in the training set molecules at all. 

4.4.Descriptor selection:

No special descriptor selection techniques had been used to reduce the

initial descriptor pool of 377 fragments (e.g., excluding statistically

insignificant or intercorrelated variables) due to the specifics of

employed modeling methodology. Any potential negative influence of

insignificant fragments would be remedied by the use of PLS method, but

their presence is necessary for providing the so called "dynamic

similarity" measure between the molecules. For this purpose, even

“blank” fragments (with zero occurrence count) should remain, as these

would allow detecting new structural features of a query molecule that

were not present in the training set, and would thus decrease its

similarity coefficient to training set molecules.

4.5.Algorithm and descriptor generation:

The generation of the descriptor matrix following the outlined approach

constituted counting the occurences of any of the pre-defined fragments

in the trainig set molecules. This procedure as well as all the

subsequent statistical analysis were performed using Algorithm Builder

1.8 software. For the descriptor generation the compound set has to be

imported into the native database format of the Algorithm Builder

software via one of the supported mechanisms: 

1. Copy/Pasting structures one-by-one from an external editor 

2. Importing a collection of MOL files 

3. Importing an SD file 

4. Importing a tab-delimited TXT file with SMILES

4.6.Software name and version for descriptor generation:

Algorithm Builder 1.8

Advanced Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, Ontario, Canada

M5C 1B5

http://www.acdlabs.com

4.7.Chemicals/Descriptors ratio:

30.2 (11387 chemicals in the training set, 377 descriptors)

 

5.1.Description of the applicability domain of the model:

Applicability domain of the model is defined based on the training set

compounds. This procedure takes into account the following two aspects: 

* Similarity of the tested compound to the training set. No reliable

predictions can be made if we have no similar compounds in the training

set; 

* Consistence of the experimental values with regard to the baseline

model for similar compounds. Even if we do have similar compounds in the

dataset the quality of prediction could be lower if that data cannot be

reproduced by the baseline model. It does not matter what the reason for

this inconsistency – experimental variability or sudden change in

mechanism of action because of slight structural changes – in any case

5.Defining the applicability domain - OECD Principle 3



it indicates possible problems when trying to give accurate predictions

5.2.Method used to assess the applicability domain:

The two aspects mentioned in Section 5.1 receive their quantitative

assessment in terms of Similarity Index (SI)

and Data-Model Consistency Index (DMCI).

TheSI, evaluating how distant the

query structure is from the whole training set, is calculated by

weighted averaging of all the individual Similarity Indices (SIi)

for the test molecule and each of the 5 most similar compounds from the

training set, calculated using "property-specific" similarity approach

as explained in Section 4.2.DMCIis calculated by comparing the differences between experimental

and

global QSAR predicted values for the 5 most similar compounds and the

suggested similarity correction value (delta)

for the test compound, calculated by averaging these differences. The

more individual differences are scattered around the calculated average (delta),

the more inconsistent are the data for the similar compounds with

regards to the global QSAR model. 

 

The final prediction Reliability Index is calculated as a product of the

aforementioned two indices: 

RI = SI * DMCIBothSIandDMCIare scaled to vary from 0 to 1, so the resultingRIalso varies in this

range. Lower values suggest a compound being further

from the Model Applicability Domain and the prediction less reliable

(lowSIor lowDMCIeither alone or in combination can be the reason). On the other hand,

highRIvalues indicate an

increasing confidence about the quality of the prediction (bothSIandDMCIhave to be high to yield

such a result).

5.3.Software name and version for applicability domain assessment:

ACD/Percepta 2014

Advanced Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, Ontario, Canada

M5C 1B5

http://www.acdlabs.com/products/percepta/

5.4.Limits of applicability:

Reliability Index < 0.3: unreliable predictions 

Reliability Index in the range 0.3-0.5: borderline reliability of

predictions 

Reliability Index in the range 0.5-0.75: moderate reliability of

predictions 

Reliability Index >0.75: high reliability of predictions

 

6.1.Availability of the training set:

Yes

6.2.Available information for the training set:

6.Internal validation - OECD Principle 4



The training set is available through the software products listed here, but is not attached to the form

itself

CAS RN: No

Chemical Name: No

Smiles: No

Formula: No

INChI: No

MOL file: No

6.3.Data for each descriptor variable for the training set:

No

6.4.Data for the dependent variable for the training set:

No

6.5.Other information about the training set:

The statistics of the training set data: 

No. of compounds = 11387 

Min. Value = -5.08 

Max. Value = 11.29 

Std. Dev. = 1.94 

Skewness = 0.25

6.6.Pre-processing of data before modelling:

None

6.7.Statistics for goodness-of-fit:

Statistics provided for the fraction of the training set that falls

within the aplicability domain of the model (RI> 0.3 - see Section 5.4) 

NRI>0.3= 11371 (i.e. 99.9% of the training set compounds) 

R2= 0.944 

RMSE= 0.457 

F= 402696.2 (Fisher's F-statistics)

6.8.Robustness - Statistics obtained by leave-one-out cross-validation:

N/A

6.9.Robustness - Statistics obtained by leave-many-out cross-validation:

N/A

6.10.Robustness - Statistics obtained by Y-scrambling:

N/A

6.11.Robustness - Statistics obtained by bootstrap:

N/A

6.12.Robustness - Statistics obtained by other methods:

N/A

 

7.1.Availability of the external validation set:

Yes

7.2.Available information for the external validation set:

The training set is available through the software products listed here, but is not attached to the form

itself

7.External validation - OECD Principle 4



CAS RN: No

Chemical Name: No

Smiles: No

Formula: No

INChI: No

MOL file: No

7.3.Data for each descriptor variable for the external validation set:

No

7.4.Data for the dependent variable for the external validation set:

No

7.5.Other information about the external validation set:

The statistics of the validation set data: 

No. of compounds = 4890 

Min. Value = -4.64 

Max. Value = 10.89 

Std. Dev. = 1.90 

Skewness = 0.16

7.6.Experimental design of test set:

Random splitting of the initial dataset into the training and validation

sets using the ratio 70%:30%.

7.7.Predictivity - Statistics obtained by external validation:

Statistics provided for the fraction of the validation set that falls

within the aplicability domain of the model (RI> 0.3 - see Section 5.4) 

NRI>0.3= 4872 (i.e. 99.6% of all the validation set compounds) 

R2= 0.940 

RMSE= 0.464 

F= 165247.5 (Fisher's F-statistics) 

Analysis of the subsets of the higher quality resultsNRI>0.5= 4772 (i.e. 97.6% of all the validation set

compounds)R2= 0.945 

RMSE= 0.444F= 177716.6 (Fisher's F-statistics) 

 

NRI>0.75= 3345 (i.e. 68.4% of all the validation set compounds) 

R2= 0.964RMSE= 0.360 

F= 197041.9 (Fisher's F-statistics)

7.8.Predictivity - Assessment of the external validation set:

As can be seen from the results of the Section 7.7 - almost the entire

validation set is within the Applicability Domain of the reported model.

7.9.Comments on the external validation of the model:

Correlation coefficients and other statistical parameters for the

training and test set compounds falling within the applicability domain

of the model are in a very good agreement.

 

8.1.Mechanistic basis of the model:

The only mechanistic consideration utilized in model building is the use

of a linear regression method (PLS) and the fragmental descriptors. In

8.Providing a mechanistic interpretation - OECD Principle 5



other words it is assumed that the final predicted value is composed of

a linear combination of all the contributions of structural moieties

making up the test molecule. Although very basic, this consideration is

one of the most fundamental ones, even the name of (Q)SAR methods

implies that the main determinant of all the properties of a compound is

its structure. Quite obviously fragments are the best and realy

first-hand descriptors of a chemical structure.

8.2.A priori or a posteriori mechanistic interpretation:

The mechanistic interpretation is given a posteriori.

8.3.Other information about the mechanistic interpretation:

A posteriori model interpretation results are consistent with generaly

understood mechanistic factors or scientific interpretations and well

documented experimental facts. I.e., the top ten fragmental descriptors

with negative coefficients are the following: 

Any positive permanent charge = -2.436 

Quaternary ammonium = -1.612 

Permanent charge on aromatic N, O, S, Se = -1.317 

Sulfonic acid = -1.125 

alpha-Amino acid = -0.965 

N-oxide = -0.674 

tertiary amine (>N-) = -0.673 

=S< = -0.670 

Any phosphorus atom = -0.573 

Lactone = -0.404 

 

Some of those fragments are very well known because of their effect of

increasing hydrophilicity of a compound. One more classical example of

such water phase favorable group, i.e., hydroxy fragment, follows this

TOP10 almost immediately with a statistical coefficient of -0.400 

Among the groups with the largest positive coefficients, the absolute

majority of them can be clearly expected to increase the hydrophobic

properties of a compound, e.g.:Bicyclo [3.1.1] scaffold = 1.103 

Spiro [5.2] scaffold = 1.066Any Si atom = 0.714 

Spiro [6.6] = 0.678 

Spiro [6.5] = 0.644Fused 6:5:5 scaffold = 0.614 

Stereohindrance in the form of two bulk branched aliphatic substituents

in both orto- positions of a phenolic group = 0.460n-Pentyl chain = 0.452n-Heptyl chain = 0.442

Aromatic sulphur = 0.419 

 

Note: the average of all 377 statistical coefficients is 0.018 

All the fragments encoding strong H-bonding in the aromatic system

(e.g., orto-keto, orto-thioketo, orto-nitro, or orto-halogenated phenols

and anilines - 6 descriptors in total) have positive coefficients which

is in agreement with the known fact that H-Bonding reduces

hydrophilicity. The coefficients of 6 fragments mentioned range from

+0.005 to +0.455 with an average of +0.15. 



Further similar examples can be established as well.

 

9.1.Comments:

Together with the prediction, ACD/Percepta displays 5 most similar

structures from the training set along with experimental results and

references, to illustrate particular data using which the similarity

correction part of the algorithm has been executed. The similarity is

measured in terms of “property-specific” similarity.
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9.3.Supporting information:

Training set(s)Test set(s)Supporting information

 

9.Miscellaneous information
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10.1.QMRF number:

To be entered by JRC

10.2.Publication date:

To be entered by JRC

10.3.Keywords:

To be entered by JRC

10.4.Comments:

To be entered by JRC
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